fbpx

Displaying items by tag: Science camp

With 2011 almost over did you know that it was the year of the Turtle?
If you did...What have you done about it.
If not there is still time to save nearly 40% of the turtles that are threatened .
permalink=”http://www.swiftnaturecamp.com/blog”>

Why Turtles, and Why Now?

Turtles are disappearing from the planet faster than any other group of animal. Today, nearly 50% of turtle species are identified as threatened with extinction. However, it's not too late for our turtle heritage to be salvaged. The United States has more endemic turtle species than anywhere on Earth; a turtle biodiversity hotspot. Our careful stewardship can preserve the rare species and keep 'common species common.'
Throughout the year, we will be raising awareness of the issues surrounding turtles through press releases, newsletters, photo contests, and related events. We believe that citizens, natural resource managers, scientists, and the pet and food and related industries can work together to address issues and to help ensure long-term survival of turtle species and populations.

Threats to US Turtles

The bad news is humans cause the largest harm to turtle populations, but the good news is we have the power to make positive changes toward turtle survival. The largest threats to turtle populations include (with the top 3 caused primarily by humans):
  • habitat loss and degradation
  • overharvest of wild turtles for food, traditional medicines, and pets
  • mortality from roads, agricultural machinery, fishing bycatch, and predators
  • invasive exotic species and diseases
  • loss of unique genetic makeup due to hybridization
  • climate change
Bookmark www.yearoftheturtle.orgfor more information on how you can get involved!

This email address is being protected from spambots. You need JavaScript enabled to view it. for our monthly newsletters, containing: 

  • A downloadable turtle photo calendar for each month, including a photo contest – your photo could be in the calendar!
  • Information about turtle conservation efforts and groups, and how you can help
  • Interviews with turtle experts, and answers to selected questions that YOU send us!
  • Information on how you can help spread the word about turtles
  • Educational materials
  • Turtle art, poetry, and cultural information
  • ... and much, MUCH, more!
  • At Swift Nature Camp you can learn more with hands on studies with turtles.

As part of the the Environmental Community here is a recent email that was sent my way to encourage Wisconsinites and educators to get involved in current Nature and Science studies. 

Greetings Environmental Educator!

I'm writing with great news for the environmental education community! 
Representative Taylor (Monona) and Senator Larson (Milwaukee) have secured over 32 co-sponsors from both legislative houses for the Wisconsin Children's Outdoor Bill of Rights.

Next steps and how you can help:
On January 5th, Representatives Taylor and Larson will publicly announce the bill and ask for the joint assembly to schedule a vote. With a great show of support from the EE community, we can ensure this bill's success. Here's what you can do:
1. Sign on to support! - show your support of the Children's Outdoor Bill of Rights and keep up to date on the bill's progress. 
2. 
Get out your art smocks - encourage children's groups to create artwork that expresses how and why spending time outdoors is of value.
3. 
Come to the January 5th press conference at the state capitol - registration details to be announced.

To find out more about this initiative, including the official language in the bill, if your legislator is a co-sponsor, or who fellow supporters are, visit the EEinWisconsin.org website. 

Please pass along this exciting news to colleagues!

For questions or comments, please contact:

Betsy Parker
Wisconsin Association for Environmental Education - Networking & Advocacy Chair
(608) 209-2909This email address is being protected from spambots. You need JavaScript enabled to view it.

Jennifer Giegerich
Wisconsin League of Conservation Voters - Legislative Director
(608) 661-0845This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Wisconsin Green & Healthy Schools Program

Schools across Wisconsin are demonstrating their commitment to a more sustainable Earth, stronger communities and healthier, more productive learning environments for students by choosing to join the Wisconsin Green and Healthy Schools program. The Wisconsin Green and Healthy Schools program is a web-based, self-paced and voluntary program available to all Wisconsin public and private elementary, middle and high schools. The program is designed to support and encourage schools in their quest for a healthy, safe, and environmentally-friendly learning environment.

Our Mission

Meadowbrook Students Recycling
The Wisconsin Green and Healthy Schools program aims to increase the students’ knowledge and awareness of Wisconsin’s natural resources and the environmental, health, and safety concerns and challenges that face our schools, our communities, and our Earth. The Green and Healthy Schools program will help students develop the necessary skills and expertise to address these challenges, and to foster life-long attitudes, behaviors, and commitments in order to make informed decisions and to encourage students to become active participants in their communities*. Furthermore, by completing the steps of the program schools will discover ways that their individual school can provide a safe, clean, and green school that promotes a productive learning environment and in doing so will help to conserve and protect our valuable natural resources.
(*Portions of the Green and Healthy Mission were taken from UNESCO, Tbilisi Declaration, 1977).

Awards and Recognitions

The journey to becoming a Wisconsin Green and Healthy School requires hard work, active participation, and a strong commitment to attaining a healthy and environmentally responsible school. The Wisconsin Department of Natural Resources and the Wisconsin Department of Public Instruction want to recognize your school’s achievements at every step of the program through a succession of awards and recognitions [PDF 125KB]. Your school is encouraged to display these awards around your school building to inform staff, students, parents, and the community of your continued commitment to providing students and staff with a healthier and greener learning environment.

 

Summer school, all-year school, summer sports programs, and electronic media have become the staples of children’s play in recent years. Children are kept fully scheduled ....
with mostly indoor activities these days. The arena of play has come indoors. The light of the sun has been supplanted by the flickering lights of computer monitors and hand held game screens. Soon, however, changing times may call for a change in the way we consider our children prepared to live a whole life in the world they will inherit.

Our kids will need to find a way to reconnect with our natural environment to become participants in a global effort to restore ecological balance. Environmental awareness begins with a sense of personal connection to nature. 

How do parents bring back balance to a child’s experience? One answer has been around since the 1920’s: summer camp. Modern summer camps can guide kids back into a natural alliance with nature through the pure fun of movement. The challenges of summer camp are fun rather than stressful, but they are no less effective for developing a child’s sense of confidence and independence.

One good example of a modern “green” summer camp is Swift Nature Camp near Minong, Wisconsin. The directors have developed policies that promote camper experience perfectly attuned to the needs of the times, without sacrificing the great fun and memorable friendships that are the classic benefits of summer camp.

Jeff and Lonnie Lorenz, directors of Swift Nature Camp, begin with their policy on electronic devices. “We do not permit cellular phones, BlackBerries, pagers, radios, iPods, cassette or CD players, laser pens, TVs, Game Boys or digital cameras. They simply are not what camp is about.”

Swift Nature Camp combines traditional camp activities with ways to immerse themselves in and learn about nature is likeliest to succeed in inspiring environmental awareness in campers.

2011-2012 is the Year of the Bat! Now is the time to educate children regarding the essential roles of bats in maintaining healthy ecosystems and human economies has never been more important. Bats are found nearly everywhere and....
approximately 1,200 species account for almost a quarter of all mammals. Nevertheless, in recent decades their populations have declined alarmingly. Many are now endangered, though they provide invaluable services that we cannot afford to lose. 
 
Simply because they are active only at night and difficult to observe and understand, bats rank among our planet’s most misunderstood and intensely persecuted mammals. Those that eat insects are primary predators of the vast numbers that fly at night, including ones that cost farmers and foresters billions of dollars in losses annually. As such bats decline, demands for dangerous pesticides grow, as does the cost of growing crops like rice, corn and cotton. 
 
Fruit and nectar-eating bats are equally important in maintaining whole ecosystems of plant life. In fact, their seed dispersal and pollination services are crucial to the regeneration of rain forests which are the lungs and rain makers of our planet. 

Many of the plants which depend on such bats are additionally of great economic value, their products ranging from timber and tequila to fruits, spices, nuts and even natural pesticides. 
 
Scary media stories notwithstanding, bats are remarkably safe allies. Where I live, in Austin, Texas, 1.5 million bats live in crevices beneath a single downtown bridge. When they began moving in, public health officials warned that they were diseased and dangerous--potential attackers of humans. Yet, through Bat Conservation International, we educated people to simply not handle them, and 30 years later, not a single person has been attacked or contracted a disease. Fear has been replaced by love as these bats catch 15 metric tons of insects nightly and attract 12 million tourist dollars each summer. 
 
It is now well demonstrated that people and bats can share even our cities at great mutual benefit. As we will show through varied Year of the Bat activities, bats are much more than essential. They’re incredibly fascinating, delightfully likeable masters of our night skies. 

Statement by Dr. Merlin Tuttle

Honorary Ambassador
Pasted Graphic
Last summer was a very exciting summer because we got to participate in REAL SCIEN!CE Thats right in a project funded by the State of Wisconsin we raised a biological contorl thatreduces the evasive spies of Eurasion Milfoil. The milfoil weevil is a natural plant predator of some types of milfoil and has been studied by researchers as a biological control for Eurasian watermilfoil for over two decades. Weevils are commonly found the SNC lake. However, because milfoil grows so fast, natural populations of weevils cannot typically control it. Our goal was to boost the natural weevil population to sustainable levels high enough to effectively control the milfoil over the long-term.We started with 750 weevels in our 10 tanks each of which held 50gallons. We feed the weevels Milfoil during the summer and released nearly 1500 weevels. We were hoping to relaese even more but for some reason, probably a cool summer we had less breeding weevels. We will be doing the same program again in 2012 to see if we can even increase production

Mass rearing of milfoil weevils (Euhrychiopsis lecontei
by volunteers: Pilot Study 
Phase I 

 

AMY THORSTENSON
FEBRUARY 2012 


Stevens Point, WI 
715/343-6215 
www.goldensandsrcd.org



Introduction 


Biological control studies are currently underway in Wisconsin to improve the 
science of applied biological control of Eurasian watermilfoil (EWM). Many lake groups 
are eagerly awaiting the results of those studies and are interested in applying biological 
control in their lake. However, for many cash-strapped lake groups, purchasing their 
weevils outright would be cost-prohibitive. As we move forward in our understanding of 
the biological control of EWM, this mass rearing pilot study aims to move us forward in 
making milfoil weevils a more practical option for lake groups with more sweat equity 
than cash. The mass rearing method (Thorstenson 2011) is labor intensive and must 
be followed to the letter in order to maximize success. Phase I of this pilot study was 
the first year of evaluating the capability of volunteer groups to successfully produce 
weevils on a mass scale. 

Methods

Study area —Lake Holcombe (Chippewa/Rusk Co) is a 2,881-acre impoundment 
of the Chippewa River, with a maximum depth of 61 ft. Large parcels of the riparian 
properties belong to the State of Wisconsin or paper company holdings and remain in 
natural/wooded condition. The Minong Flowage (Douglas/Washburn Co) is a 1,587- 
acre impoundment of the Totagatic River, with a maximum depth of 21 feet and 
surrounding natural/wooded shoreline. Goose Lake (Adams Co) is an 84-acre seepage 
lake with a maximum depth of 22 ft and surrounding natural/wooded shoreline. 
Study Design — Weevil rearing methods were modeled after Hanson, et al. 
1995, with modifications based graduate work conducted by Amy Thorstenson at UW-



Stevens Point (Thorstenson2011). Hanson, et al. reported that an outdoor stock tank 
performed just as well their indoor, controlled 20-gal aquariums, with less management 
time invested. Thorstenson’s studies found similar results, and developed a simplified 
method for outdoor, mass rearing. 
Each lake group set-up and maintained 10, 370-L “Freeland poly-tuf stock tanks 
(79cm W x 132cm L x 63cm H), stationed in an outdoor area where full sun and access 
to a clean water supply was available. The sunniest location available was selected to 
keep the milfoil stems (food stems) healthy, but water temperatures were monitored to 
ensure they did not approach lethal temperatures (34 C / 93 F). Water temperatures 
were monitored with aquarium thermometers and recorded regularly. Fresh water was 
added as needed to top off the tanks. NoSeeUm (0.033 cm mesh) light duty fiberglass 
screening was used to cover the tanks and pools. While the primary use of the 
screening was to exclude predator/competitor insects and birds, it also functioned as 
light shade to reduce peak temperatures in the tanks during sunlight hours. 

EWM stems to be used for food were collected from the same lake that would be 
the recipient of the weevils reared. Stems were collected from the deepest milfoil beds 
available, farthest from shore, where naturally occurring weevils were less likely to be 
present, in order to avoid the inadvertent introduction of unaccounted for weevils. To 
minimize the introduction of predator or competitor insects, the collected food stems 
were laid thinly over a mesh screen and sprayed with a hose and nozzle at a pressure 
sufficient to clean the milfoil but not damage it. Cleaned stems were then be floated in a 
wading pool of clean water, sorted and untangled. Because weevils lay their eggs on 



apical meristems, only stems with apical meristems were retained for use; stems that 
had gone to flower or had broken tips were be discarded. Stems were trimmed to a 
length sufficient to reach from the base of the rearing chamber to the surface of the 
chamber’s water (62 cm). Stems were then bundled together in groups of fifteen stems, 
and attached at the base to a rock with a rubber-band to weight the stems down and 
achieve vertical orientation in the rearing chamber. All chambers received an initial 
stocking of milfoil food bundles, with stockings repeated every 21 days to keep the 
weevils supplied with actively growing milfoil (Table 1). 
Table 1 
Weevil feeding schedule. 

# of EWM 
stems to feed 
per tank 
Day 0 
Day 21 
Day 42 
105 
165 
225 

The “starter batch” of weevils were purchased from EnviroScience, Inc., Ohio. 
EnviroScience Inc. provided weevil stock from northern Wisconsin, in order to ensure 
weevils with winter-hardy genetics. Each tank was stocked with 0.19 weevils/L (72 
weevils per 100-gal tank). The purchased weevils arrived as eggs and early instar 
larvae attached to bundles of milfoil stems in sealed plastic bags. The estimated 
number of weevils in each bag was written on the outside of each bag, however the 
number of weevils inside were assumed to be unevenly distributed amongst the milfoil 
stems within. Therefore, the stems were placed into a large tub of water and counted to 
derive an estimated average of weevils per stem. Stems were then selected randomly 



to accumulate the number of weevils needed to stock each rearing chamber. Thus, the 
number of weevils initially stocked to each rearing chamber was an estimated average. 

Chambers were maintained for approximately 55 days, allowing enough time for 
producing two generations. Prior to releasing the weevils to their recipient lake, 
subsamples were extracted to estimate total production. A 10% subsample of the 
weevil-containing food stems were extracted from four of the ten tanks (selected at 
random), preserved in 80% isopropyl alcohol, and refrigerated until laboratory 
examination. The preserved subsample stems was examined by Thorstenson by 
floating stems in water in a glass pan over a light table, with 3x magnification goggles. 
Each stem was carefully examined for weevil eggs, larvae, pupae, and adults and the 
total number of weevils recorded. The assistance of a higher power (30x) Carson 
MagniscopeTM was used for identification of specimens when needed. Specimen 
vouchers were preserved in sample vials in 80% isopropyl alcohol. 

Data Analysis — For the each rearing site, average return rate and total estimated 
production was estimated based on the 10% subsamples. Total estimated release (total 
production – subsamples) was also calculated. Temperature records were analysed to 
calculate min, max, mean, and 90% confidence intervals, to evaluate whether volunteers were 
maintaining optimal water temperatures. 

Results

Goose Lake – Expected return rate was 9.6 weevils out per weevil stocked, and 
Goose Lake’s return rate was 0.6. (Table 2) 720 weevils were initially stocked to the10 



rearing tanks, and total production was estimated at 400 weevils. Lab examinations 
observed: low occurrence of miscellaneous insects; substantial mixing of hybrid milfoil, 
M. sibiricum, and M. verticillatum stems; dead or bacteria-engulfed pupa; low 
occurrence of pupation sites; and low evidence of weevil damage on non-M. spicatum
stems. Due to an acute lack of available M. spicatum in Goose Lake, M. sibiricum and 
hybrid milfoil were also collected as an optional food choice when it became necessary. 
Water temperatures were monitored but not recorded. Tank temperatures were 
moderated by adding fresh groundwater as needed. 
Minong Flowage - Expected return rate was 9.6 weevils out per weevil stocked, 
and Minong Flowage’s return rate was 1.8. (Table 3) 720 weevils were initially stocked 
to the10 rearing tanks, and total production was estimated at 1,300 weevils. Lab 
examinations observed: low occurrence of miscellaneous insects; no non-M. spicatum
mixed in; heavy weevil damage to stems in some tanks; and fused, deformed milfoil 
leaflets and hardened, opaque stems (indicative of exposure to herbicides) in some 
tanks. Tank temperatures were moderated by adding fresh groundwater as needed. 
Water temperature ranged from 60 - 80 F, with a mean of 71 F. (Table 4) These 
temperatures were similar to temperatures expected (per Thorstenson 2011), but lower 
than the temperatures optimal for weevil production. (Figure 1) 
Lake Holcombe - Expected return rate was 9.6 weevils out per weevil stocked, 
and Lake Holcombe’s return rate was 3.1. (Table 5) 720 weevils were initially stocked 
to the10 rearing tanks, and total production was estimated at 2,090 weevils. Lab 
examinations observed: low occurrence of miscellaneous insects; no non-M. spicatum
species mixed in; poor stem health; heavy weevil damage to stems in some tanks; 



limited available oviposition sites; and fewer eggs than expected. Tank temperatures 
were moderated by adding fresh groundwater as needed. Water temperature ranged 
from 70 - 90 F, with a mean of 82 F. (Table 6) These temperatures were higher than 
temperatures expected (per Thorstenson 2011), and similar to temperatures optimal for 
weevil production. (Figure 1) 

Discussion


Goose Lake production was substantially lower than expected, and the optional 
feeding on non-M. spicatum species was likely the key problem. Temperatures were 
closely monitored (although not recorded), and not believed to be a problem. 
Subsample observations noted few miscellaneous insects, ruling out a predation 
problem. Subsample examinations confirmed several species of milfoil were used in 
feeding, including: M. sibiricum, hybrid milfoil (northern x M. spicatum), M. verticillatum
M. heterophyllum is also present in Goose Lake and may also have been fed, although 
subsample examinations did not confirm this. Subsample examinations noted problems 
with pupation (bacteria-laden pupa, dead pupa, few pupal chambers observed), and 
weevil damage observed on M. spicatum but not the other species that were mixed in. 
Weevil developmental time is longer, and developmental performance is poorer, on M. 
sibiricum than on their exotic host, M. spicatum (Newman et al. 1997). Research in the 
Midwest has found that weevil performance on hybrid milfoils was intermediate between 
the native hose (M. sibiricum) and the exotic host (M. spicatum) (Roley & Newman 
2006). Weevil developmental time is significantly longer when reared on M. 
verticillatum than on M. spicatum (37 days versus 21 days) (Solarz & Newman 2001). 



Additionally, oviposition (where they choose to lay their eggs) preference was 
significantly less for M. sibiricum and nearly absent for M. verticillatum in females that 
were reared on M spicatum (Solarz & Newman 2001). Weevil development on or 
preference for M. heterophyllum is unknown. Therefore, the optional feeding of other 
milfoils, although unpreventable due to an acute lack of M. spicatum in 2011, was likely 
the main factor in low production. 
Minong Flowage had lower than expected production, possibly due to a 
combination of factors. One factor may have been food stem quality. The Minong site 
was the shadiest of the three sites, and subsample examinations noted stems in very 
poor condition, some limp, as if they did not get enough sunlight. Additionally, some 
tubs had stems that were deformed (fused leaflets, tough, opaque stems) as if exposed 
to herbicides. Food stem collection was in an area of the Flowage that had not been 
treated with herbicides, but was within the same bay (Serenity Bay). (Appendix B) It 
would be possible that residual herbicides were insufficient to kill the milfoil there, but 
yet sufficient to cause growth deformities. These deformities may have negatively 
affected the plant’s qualities as a host plant for successful weevil development. (Note 
the dead pupa recoded in the same tub that had the deformed stems.) 
Lake Holcombe had lower than expected production, probably due to weevil 
development time being shorter than expected. The rearing site was in open prairie, 
with all-day sun, which allowed the tubs to warm more than expected. Volunteers 
managed the temperatures frequently, adding fresh, cool groundwater twice a day if 
needed to keep tanks from getting too hot during heat waves. Their temperature 
records reflect that effort, with tank temperatures hovering around a mean of 81 F, and 



a tight 90% confidence interval of less than 1 degree. We were expecting tub 
temperatures to average around 71 F, as in Thorstenson 2011, and for the full life cycle 
to take about 21 days. Lake Holcombe’s temperatures were closer to optimal 
temperatures for weevil development (84 F, Mazzei et al. 1999). At this temperature, 
the full life cycle takes only 17 days (Mazzei et al. 1999), which means the weevils 
should have been fed four days sooner, at each feeding cycle. Subsample 
examinations found heavy feeding damage, a shortage of healthy growing buds suitable 
for egg laying, and a shortage of healthy, fat stems suitable for pupation sites, all 
evidence that the weevils were running out of food and habitat, which certainly led to 
reduced production rates. 
Although the results of this study were well below expected, the problems 
encountered can be adjusted for with modifications to the methods. In future studies, it 
is recommended to: 
select rearing sites that have a minimum of 6 hours of sunlight to maintain 
healthy food stems; 
collect food stems well away from potential herbicide residue areas; 
avoid the optional use of other milfoil species; 
and to monitor temperatures regularly and shorten feeding cycle times at very 
sunny sites where optimal temperatures are attained. 

Acknowledgments

 
This study was funded by an Aquatic Invasive Species Grant (#AEPP-304-11) 
from the Wisconsin Department of Natural Resources. This study would not have been 

10 

possible without the dedication of team leaders at each site: David Blumer, SEH, Inc., 
Reesa Evans, Adams County Land Conservation Department, and “Doc” Dougherty, 
Lake Holcombe Association; and their dedicated volunteer crews at Goose Lake 
Association, Swift Nature Camp, Minong Flowage Lake Association, and Lake 
Holcombe Association. 

References


Hanson, T., C. Eliopoulos, and A. Walker. 1995. Field Collection, Laboratory Rearing 
and In-lake Introductions of the Herbivorous Aquatic Weevil, Euhrychiopsis 
lecontei, in Vermont. Vermont Department of Environmental Conservation, 
Waterbury, VT. 
Mazzei, K.C., R.M. Newman, A. Loos, and D.W. Ragsdale. 1999. Developmental rates 
of the native milfoil weevil, Euhrychiopsis lecontei, and damage to Eurasian 
watermilfoil at constant temperatures. Biological Control. 16:139-143. 
Newman, R.M., M.E. Borman, and S.W. Castro. 1997. Developmental performance of 
the weevil Euhrychiopsis lecontei on native and exotic watermilfoil host-plants. J. 
of the North Amer. Benthological Soc. 16:627-634. 
Roley, S.S., and R.M. Newman. 2006. Developmental performant of the milfoil weevil, 
Euhrychiopsis lecontei (Coleoptera: Curculionidae), on northern watermilfiol, 
Eurasian watermilfoil, and hybrid (northern x Eurasian) watermilfoil. 
Entomological Soc. of Amer. 

Solarz, S.L. and R.M. Newman. 2001. Variation in hostplant preferences and 
performance by the milfoil weevil, Euhrychiopsis lecontei Dietz, exposed to native 
and exotic watermilfoils. Oecologia 126:66-75.

Thorstenson, A.L. 2011. Biological control of eurasian watermilfoil (Myriophyllum 
spicatum) using the native milfoil weevil (Euhrychiopsis lecontei). M.S. Thesis. 
University of Wisconsin-Stevens Point, Stevens Point, WI. 

One Tree can make a difference.
As we near Earth Day 2012 it is important that 
we all realize that the planting of 1 tree can make a difference. 
Read more about How trees change our life
The information below, except where noted, was taken from the LEAF Urban Forest Lesson Guide: 
The information provided is in reference to urban forests, but these benefits and values also apply to rural forests. 
Canopy, or tree canopy, is a term used to describe the leaves and branches of a tree or group of trees. In an urban forest, tree canopy is important to the potential benefits the forest may provide. In general, the more area it covers and the denser the canopy, the more benefits the trees can provide. Although one tree is better than none, 100 are better still. Whether the benefits are from one tree or many trees, they are all still real and most can be quantified in some way. Often, forest benefits are divided into three categories: social, economic, and ecologic. It is difficult to divide the benefits that the urban forest canopy provides into these categories because so many benefits fall into more than one. 


Social Benefits

Just as with a rural forest, an urban forest provides many benefits. Numerous studies have been done about the social 
and psychological benefits of “green” in urban environments. The findings of the studies make a strong case for the 
importance of urban forests. Urban public housing residents who lived in buildings without trees and grass nearby were 
asked about how they cope with major life issues. They reported more procrastination and assessed their issues as more 
severe than residents with green nearby. 
A study done with children with Attention Deficit Disorder (ADD) found that children with ADD were better able to focus 
and concentrate after playing in natural, green settings, than in settings where concrete was predominant. 
Apartment buildings with high levels of greenery have been shown to have approximately half the number of crimes 
than those with little or no greenery. The results proved true for both property crimes and violent crimes. A similar study 
found that residents living in areas without nearby nature reported more aggression and violence than those living with 
nearby green. In addition to these specific studies, access to nature also provides humans with other social benefits. 
Parks and other green spaces provide a space for people to play, walk, jog, birdwatch, or just sit quietly. These activities 
are good for our physical health in a society that is increasingly sedentary. It is also good for our mental health by 
providing a place to unwind. Trees also reduce noise levels. 

Economic Benefits 

The economic benefits of urban forests are increasingly being documented. Economics often becomes the language 
used when it comes to urban forest management. Budgets of municipalities must cover an array of services, and the 
benefits of an urban ecosystem must often be proven to secure funding. In a study that considered the costs and 
benefits of municipal forests in five U.S. cities, the researchers found that for every dollar spent on trees, the benefits 
returned were worth from $1.37 to $3.09. A little math tells us this is clearly a good investment. 
Trees save money through reduced energy costs. Cities create what is referred to as a heat island. The concrete, asphalt, 
buildings, and other surfaces absorb and hold heat from the sun. During hot summer days, cities can be five to nine 
degrees warmer than surrounding areas. Shading, evapotranspiration, and wind speed reduction provided by trees help 
conserve energy in buildings. A study conducted in Minneapolis, Minnesota, showed that trees placed in the proper 
location can reduce total heating and cooling costs by eight percent. 
Homeowners not only reduce costs of heating and cooling their homes, but increase the value of their property by 
planting trees. Research suggests that property value can increase three to seven percent when trees are present. Trees 
also make homes and neighborhoods more desirable places to live. One economic benefit that urban trees can provide, 
but often don’t, is one based on products. Municipalities and tree services across the country have come up with ways 
to use the wood that is cut from an urban forest. Products range from specialty furniture, to musical instruments, to 
lumber for park shelters, to artwork. The income from selling products from the wood of trees being removed could be used to defray the cost associated with the removal, making trees an even better investment. 


Trees and Climate Change

The information about how trees impact climate change is taken from the National Arbor Day website 
http://www.arborday.org/globalwarming/treesHelp.cfm, and the American Forest Foundation website 
www.americanforests.org/resources/climatechange/ 
Deciduous trees, planted on the west, east and south sides, will keep your house cool in the summer and let the sun 
warm your home in the winter, reducing energy use. 
Just three trees, properly placed around a house, can save up to 30% of energy use. 
Trees or shrubs planted to shade air conditioners help cool a building more efficiently, using less electricity. A unit 
operating in the shade uses as much as 10% less electricity than the same one operating in the sun. 
Neighborhoods with well-shaded streets can be up to 6–10° F cooler than neighborhoods without street trees, reducing 
the heat-island effect, and reducing energy needs. 
Shaded parking lots keep automobiles cooler, reducing emissions from fuel tanks and engines, and helping reduce the 
heat-island effect in communities. 
Trees absorb carbon dioxide (CO2), the primary gas causing global climate change. Trees retain the carbon (C) from the 
CO2 molecule and release oxygen (O2) into the atmosphere. The retained carbon makes up half the dry weight of a tree. 
Forests are the world's second largest carbon reservoirs (oceans are the largest). Unlike oceans, however, we can grow 
new forests. One acre of forestland will sequester between 150 - 200 tons of CO2 in its first 40 years. 

Mom Was Right: Go Outside

Young children are increasingly shunning the country, even as scientists outline the mental benefits of spending time in natural settings.
  • May 25, 2012, 11:26 a.m. ET
  • By JONAH LEHRER
After a brief exposure to the outdoors, people are more creative, happier and better able to focus.
Humans are quickly becoming an indoor species.
In part, this is a byproduct of urbanization, as most people now live in big cities. Our increasing reliance on technology is also driving the trend, with a recent study concluding that American children between the ages of 8 and 18 currently spend more than four hours a day interacting with technology.
As a result, there's no longer time for nature: From 2006 to 2010, the percentage of young children regularly engaging in outdoor recreation fell by roughly 15 percentage points.
This shift is occurring even as scientists outline the mental benefits of spending time in natural settings. According to the latest research, untamed landscapes have a restorative effect, calming our frazzled nerves and refreshing the tired cortex. After a brief exposure to the outdoors, people are more creative, happier and better able to focus. If there were a pill that delivered these same results, we'd all be popping it.
Consider a forthcoming paper by psychologist Ruth Ann Atchley and her colleagues at the University of Kansas. To collect their data, the researchers partnered with the nonprofit Outward Bound, which takes people on extended expeditions into nature. To measure the mental benefits of hiking in the middle of nowhere, Dr. Atchley gave 60 backpackers a standard test of creativity before they hit the trail. She gave the same test to a different group of hikers four days into their journey.
The results were surprising: The hikers in the midst of nature showed a nearly 50% increase in performance on the test of creativity, and the effect held across all age groups.
"There's a growing advantage over time to being in nature," says Dr. Atchley. "We think that it peaks after about three days of really getting away, turning off the cellphone. It's when you have an extended period of time surrounded by that softly fascinating environment that you start seeing all kinds of positive effects in how your mind works."
This latest study builds on a growing body of evidence demonstrating the cognitive benefits of nature. Although many of us find the outdoors alienating and uncomfortable—the bugs, the bigger critters, the lack of climate control—the brain reacts to natural settings by, essentially, sighing in relief.
In 2009, a team of psychologists led by Marc Berman at the University of Michigan outfitted undergraduates with GPS receivers. Some of the students took a stroll in an arboretum, while others walked around the busy streets of downtown Ann Arbor.
The subjects were then run through a battery of psychological tests. People who had walked through the natural setting were in a better mood and scored significantly higher on tests of attention and short-term memory, which involved repeating a series of numbers backward. In fact, just glancing at a photograph of nature led to measurable improvements, at least when compared with pictures of cities.
This also helps to explain an effect on children with attention-deficit disorder. Several studies show that, when surrounded by trees and animals, these children are less likely to have behavioral problems and are better able to focus on a particular task.
Scientists have found that even a relatively paltry patch of nature can confer cognitive benefits. In the late 1990s, Frances Kuo, director of the Landscape and Human Health Laboratory at the University of Illinois, began interviewing female residents in the Robert Taylor Homes, a massive housing project on the South Side of Chicago.
Dr. Kuo and her colleagues compared women who were randomly assigned to various apartments. Some had a view of nothing but concrete sprawl, the blacktop of parking lots and basketball courts. Others looked out on grassy courtyards filled with trees and flower beds. Dr. Kuo then measured the two groups on a variety of tasks, from basic tests of attention to surveys that looked at how the women were handling major life challenges. She found that living in an apartment with a view of greenery led to significant improvements in every category.
Cities are here to stay; so are smartphones. What this research suggests, however, is that we need to make time to escape from everyone else, to explore those parts of the world that weren't designed for us. It's when we are lost in the wild that the mind is finally at home.
For years at camp we have been told by the Department OF Natural Resources that a pack of wolves tight near camp. Oh sure, on a good night you might near them howling at the moon. But that is totally different than seeing one. So after all these years it happened, we were driving back to camp with a full van and there it was on the side of the road so big I thought it was a deer from far way. It’s color surprised me because it was not the normal grey/black, no it was much lighter. But how did this happen..........
A growing population of wolves now lives in Wisconsin, one of about a dozen states in the country where gray wolves exist in the wild. Gray wolves, also referred to as timber wolves, are the largest wild members of the dog family. Wolves are social animals, living in a family group, or pack. A wolf pack's territory may cover 20-80 square miles, about one tenth the size of an average Wisconsin county. The gray wolf was has been on and off the endangers species list numerous times. However in 2012 it is removed with a population nearing 1000. Today their is talk of introducing a very limited hunting season.

Gray wolf factsheet

The gray wolf (Canis lupus), also known as timber wolf, originally occurred across North America, Europe and Asia (Nowak 1995). Coyotes (Canis latrans) are sometimes called brush wolves but are not true wolves.
  • Legal status in U.S.: Federally delisted since January 27, 2012. Currently a "Protected Wild Animal" in Wisconsin.
  • 2011 Numbers in Wisconsin: ~800
  • Length: 5.0-5.5 feet long (including 15-19 inch tail)
  • Height: 2.5 feet high
  • Weight: 50-100 pounds/average for adult males is 75 pounds, average for adult females is 60 pounds.
Wolves are generally shy of people and avoid contact with them. Any wild animal, however, can be dangerous if it is cornered, injured or sick, or has become habituated to people through activities such as feeding. In the case of large predators, like wolves and bears, it is particularly important for people to avoid actions that encourage these animals to spend time near people, or become dependent on them for food.

Description

The sound of a howling gray wolf is becoming a more common event in Wisconsin. A growing population of wolves now live in Wisconsin, one of about a dozen states in the country where timber wolves exist in the wild.
Gray wolves, also referred to as timber wolves, are the largest wild members of the dog family. Males are usually bigger than females. Wolves have many color variations but tend to be buff-colored tans grizzled with gray and black (although they can also be black or white). In winter, their fur becomes darker on the neck, shoulders and rump. Their ears are rounded and relatively short, and the muzzle is large and blocky. Wolves generally hold their tail straight out from the body or down. The tail is black tipped and longer than 18 inches.
Wolves can be distinguished by tracks and various physical features. A wolf, along other wild canids, usually places its hind foot in the track left by the front foot, whereas a dog's front and hind foot tracks usually do not overlap each other. See the 
wolf identification page for more details.
Thumbnails link to larger images.
DMIwolves01_80x80DMIwolves02_80x80DMIwolves03_80x80wolf01_80x80wolf_lukawski_80x80wolf03_80x80

Habits

Wolves are social animals, living in a family group or pack. A pack usually has six to 10 animals - a dominant ("alpha") male and female (the breeding pair), pups from the previous year (yearlings) and the current year's pups. Additional subordinate adults may join the pack upon occasion. The dominant pair is in charge of the pack, raising the young, selecting denning and rendezvous sites, capturing food and maintaining the territory.
A wolf pack's territory may cover 20-120 square miles, about one tenth the size of an average Wisconsin county. Thus, wolves require a lot of space in which to live, a fact that often invites conflict with humans.
While neighboring wolf packs might share a common border, their territories seldom overlap by more than a mile. A wolf that trespasses in another pack's territory risks being killed by that pack. It knows where its territory ends and another begins by smelling scent messages - urine and feces - left by other wolves. In addition, wolves announce their territory by howling. Howling also helps identify and reunite individuals that are scattered over their large territory.
How does a non-breeding wolf attain dominant, or breeding status? It can stay with its natal pack, bide its time and work its way up the dominance hierarchy. Or it can disperse, leaving the pack to find a mate and a vacant area in which to start its own pack. Both strategies involve risk. A bider may be out-competed by another wolf and never achieve dominance. Dispersers usually leave the pack in autumn or winter, during hunting and trapping season.
Dispersers must be alert to entering other wolf packs' territories, and they must keep a constant vigil to avoid encounters with people, their major enemy. Dispersers have been known to travel great distances in a short time. One radio-collared Wisconsin wolf traveled 23 miles in one day. In ten months, one Minnesota wolf traveled 550 miles to Saskatchewan, Canada. A female wolf pup trapped in the eastern part of the Upper Peninsula of Michigan, died from a vehicle collision near Johnson Creek in Jefferson County, Wisconsin in March 2001, about 300 miles from her home territory.
Nobody knows why some wolves disperse and others don't. Even siblings behave differently, as in the case of Carol and Big Al, radio-collared yearling sisters in one Wisconsin pack. Carol left the pack one December, returned in February, then dispersed 40 miles away. Big Al remained with the pack and probably became the pack's dominant female when her mother was illegally shot.
In another case, two siblings dispersed from their pack, but did so at different times and in different directions. One left in September and moved 45 miles east and the other went 85 miles west in November.

Food

Timber wolves are carnivores feeding on other animals. A study in the early 1980s showed that the diet of Wisconsin wolves was comprised of 55 percent white-tailed deer, 16 percent beavers, 10 percent snowshoe hares and 19 percent mice, squirrels, muskrats and other small mammals. Deer comprise over 80 percent of the diet much of the year, but beaver become important in spring and fall. Beavers spend a lot of time on shore in the fall and spring, cutting trees for their food supply. Since beavers are easy to catch on land, wolves eat more of them in the fall and spring than during the rest of the year. In the winter, when beavers are in their lodges or moving safely beneath the ice, wolves rely on deer and hares. Wolves' summer diet is more diverse, including a greater variety of small mammals.

Breeding biology

Wolves are sexually mature when two years old, but seldom breed until they are older. In each pack, the dominant male and female are usually the only ones to breed. They prevent subordinate adults from mating by physically harassing them. Thus, a pack generally produces only one litter each year, averaging five to six pups.
In Wisconsin, wolves breed in late winter (late January and February). The female delivers the pups two months later in the back chamber of a den that she digs. The den's entrance tunnel is 6-12 feet long and 15-25 inches in diameter. Sometimes the female selects a hollow log, cave or abandoned beaver lodge instead of making a den.
At birth, wolf pups are deaf and blind, have dark fuzzy fur and weigh about 1 pound. They grow rapidly during the first three months, gaining about 3 pounds each week. Pups begin to see when two weeks old and can hear after three weeks. At this time, they become very active and playful.
When about six weeks old, the pups are weaned and the adults begin to bring them meat. Adults eat the meat at a kill site often miles away from the pups, then return and regurgitate the food for the pups to eat. The hungry pups jump and nip at the adults' muzzles to stimulate regurgitation.
The pack abandons the den when the pups are six to eight weeks old. The female carries the pups in her mouth to the first of a series of rendezvous sites or nursery areas. These sites are the focus of the pack's social activities for the summer months and are usually near water.
By August, the pups wander up to two to three miles from the rendezvous sites and use them less often. The pack abandons the sites in September or October and the pups, now almost full-grown, follow the adults.

Photos of wolf pups at a den site

Thumbnails link to larger images.
pup01_80x80pup02_80x80pup03_80x80pup04_80x80pup05_80x80pup06_80x80pup07_80x80

Distribution

Before Europeans settled North America, gray wolves inhabited areas from the southern swamps to the northern tundra, from coast to coast. They existed wherever there was an adequate food supply. However, people overharvested wolf prey species (e.g., elk, bison and deer), transformed wolf habitat into farms and towns and persistently killed wolves. As the continent was settled, wolves declined in numbers and became more restricted in range. Today, the majority of wolves in North America live in remote regions of Canada and Alaska. In the lower 48 states, wolves exist in forests and mountainous regions in Minnesota, Michigan, Wisconsin, Montana, Idaho, Wyoming, Washington, Arizona, New Mexico, North Dakota, and possibly in Oregon, Utah and South Dakota.
Map showing wolf distribution

History in Wisconsin

Before Wisconsin was settled in the 1830s, wolves lived throughout the state. Nobody knows how many wolves there were, but best estimates would be 3,000-5,000 animals. Explorers, trappers and settlers transformed Wisconsin's native habitat into farmland, hunted elk and bison to extirpation, and reduced deer populations. As their prey species declined, wolves began to feed on easy-to-capture livestock. As might be expected, this was unpopular among farmers. In response to pressure from farmers, the Wisconsin Legislature passed a state bounty in 1865, offering $5 for every wolf killed. By 1900, no timber wolves existed in the southern two-thirds of the state.
At that time, sport hunting of deer was becoming an economic boost to Wisconsin. To help preserve the dwindling deer population for this purpose, the state supported the elimination of predators like wolves. The wolf bounty was increased to $20 for adults and $10 for pups. The state bounty on wolves persisted until 1957. By the time bounties were lifted, millions of taxpayers' dollars had been spent to kill Wisconsin's wolves, and few wolves were left. By 1960, wolves were declared extirpated from Wisconsin. Ironically, studies have shown that wolves have minimal negative impact on deer populations, since they feed primarily on weak, sick, or disabled individuals.
The story was similar throughout the United States. By 1960, few wolves remained in the lower 48 states (only 350-500 in Minnesota and about 20 on Isle Royale in Michigan). In 1974, however, the value of timber wolves was recognized on the federal level and they were given protection under the 
Endangered Species Act [exit DNR]. With protection, the Minnesota wolf population in-creased and several individuals dispersed into northern Wisconsin in the mid-1970s. In 1975, the Wisconsin Department of Natural Resources declared timber wolves endangered.
Intense monitoring of wolves in Wisconsin by the DNR began in 1979. Attempts were made to capture, attach radio collars and radio-track wolves from most packs in the state. Additional surveys were done by snow-tracking wolf packs in the winter and by howl surveys in the summer. In 1980, 25 wolves in 5 packs occurred in the state, but dropped to 14 in 1985 when parvovirus reduced pup survival and killed adults. Wisconsin DNR completed a wolf recovery plan in 1989. The recovery plan set a state goal for reclassifying wolves as threatened once the population remained at or above 80 for three years. Recovery efforts were based on education, legal protection, habitat protection, and providing compensation for problem wolves.
In the 1990s the wolf population grew rapidly, despite an outbreak of mange between 1992 -1995. The DNR completed a new management plan in 1999. This management plan set a delisting goal of 250 wolves in late winter outside of Indian reservations, and a management goal of 350 wolves outside of Indian reservations. In 1999, wolves were reclassified to state threatened status with 205 wolves in the state. In 2004 wolves were removed from the state threatened species list and were reclassified as a protected wild animal with 373 wolves in the state.

Current status (as of April 2012)

The wolf is a "Protected Wild Animal" in Wisconsin. After five years of delisting attempts and subsequent court challenges, a new federal delisting process began on May 5, 2011 and wolves were officially delisted on January 27, 2012. The count in winter 2011 was about 782-824 wolves with 202-203 packs, 19-plus loners, and 31 wolves on Indian reservations in the state.

Misconceptions and controversies

Wolves are the "bad guys" of fable, myth and folklore. The "big bad wolf" fears portrayed in "Little Red Riding Hood," "Peter and the Wolf" and other tales have their roots in the experiences and stories of medieval Europe. Wolves were portrayed as vile, demented, immoral beasts. These powerful negative attitudes and misconceptions about wolves have persisted through time, perpetuated by stories, films and word-of-mouth, even when few Americans will ever have the opportunity to encounter a wolf.
Wolves are controversial because they are large predators. Farmers are concerned about wolves preying on their livestock. In northern Wisconsin, about 50-60 cases of wolf depredation occur per year, about half are on livestock and half on dogs. As the population continues to increase, slight increases in depredation are likely to occur. In Minnesota, with about 3,000 wolves, there are usually 60 to 100 cases per year.
A few hunters continue to illegally kill wolves, believing that such actions will help the deer herd. It is important to place in perspective the impact of wolves preying on deer. Each wolf kills about 20 deer per year. Multiply this by the number of wolves found in Wisconsin in recent years (800), and approximately 16,000 deer may be consumed by wolves annually. This compares to about 27,000 deer hit by cars each year, and about 340,000 deer shot annually by hunters statewide. Within the northern and central forests where most wolves live, wolves kill similar numbers of deer as are killed by vehicles (about 8,000), and about 1/10 of those killed by hunters (8,000 in 2010). Wolves are a factor in the deer herd, but only one of many factors that affects the total number of deer on the landscape.

Research and management

The Wisconsin DNR has been studying wolves since 1979 by live capturing, attaching radio collars and monitoring movements. Much has been learned about wolf ecology in northern Wisconsin. In 1992, the department began a research project to determine the impact of highway development in northwest Wisconsin on wolves. A Geographic Information System, (computer mapping system) was used to determine that northern Wisconsin has about 6,000 square miles of habitat that could support 300-500 wolves. Recent studies suggest the state can perhaps support 700 to 1,000 wolves (in late winter), but this level may not be socially tolerated and recent federal delisting of wolves will allow the department to manage the wolf population toward sustainable but acceptable population levels.
The DNR recognizes wolves as native wildlife species that are of value to natural ecosystems and benefit biological diversity of Wisconsin. The department approved a Wolf Recovery Plan in 1989. The plan's goal of 80 wolves was first achieved in 1995 mainly through protection and public education programs, and did not require any active reintroductions into the state. In 1999, wolves were reclassified to threatened in Wisconsin, and a new wolf management plan was approved that set a state delisting goal at 250 and management goal at 350 wolves in late winter outside of Indian reservations. The wolf management goal represents a threshold level that allows the Department to use a full range of lethal controls, including public harvest, to manage the wolf population. Wolves were state delisted in 2004 and federally in 2012, returning management back to the state and Indian tribes. Landowners will be able to control some problem wolves on their land and government trappers will remove problem wolves from depredation sites.

This simple beauty is something everyone must partake in. This is only one of the reason Summer Camp is so special.

Wisconsin Summer Campsare the perfect place to expose kids to camp. Picking. a Wisconsin summer camp offers a child the chance to be away from daily civilization. No place in the midwest will give a child an amazing experience in the country. At Camp Nature Swift child gets to play, make new friends and learn new outdoor activities, this takes place in the fun sun of the northwoods of Wisconsin.

A Wonderful Summer Camp. (Summary)
The children have such a diverse selection of activities at this Wisconsin summer camp that they can barely fit it all in during their stay! From horseback riding and swimming to archery and craft making the time is action packed with fun filled adventure that your child won’t stop talking about. 

Swift Camp is dedicated to the spirit of Naturalist Ernie Swift. The camps goal is to provide a traditional summer camp while encouraging children to respect nature and to understand it in a more profound way, This ACA accredited camp has been helping children have a great summer for over 40 years. 

The Discovery Program is a unique camp program only for the first time camper. This special session is unlike any other sleepaway camp because it is designed to give additional attention to those children a little reluctant to leave home for their first overnight summer camp experience. Regardless if your child is a first time campers or is experienced at overnight backpacking and canoeing trips your child can attend this camp.

To learn more about picking the best summer camp for your child visit SummerCampAdvice.com

Page 9 of 15

Winter

25 Baybrook Ln.

Oak Brook, IL 60523

Phone: 630-654-8036

swiftcamp@aol.com

Camp

W7471 Ernie Swift Rd.

Minong, WI 54859

Phone: 715-466-5666

swiftcamp@aol.com